
Vol. 21 no. 24 2005, pages 4378–4383

doi:10.1093/bioinformatics/bti717BIOINFORMATICS ORIGINAL PAPER

Gene expression

Effect of pooling samples on the efficiency of comparative

studies using microarrays
Shu-Dong Zhang� and Timothy W. Gant�
MRC Toxicology Unit, Hodgkin Building, Lancaster Road, University of Leicester, Leicester, UK

Received on July 27, 2005; revised on September 22, 2005; accepted on October 12, 2005

Advance Access publication October 18, 2005

ABSTRACT

Motivation: Many biomedical experiments are carried out by pooling

individual biological samples.However, poolingsamples canpotentially

hide biological variance and give false confidence concerning the data

significance. In the context of microarray experiments for detecting

differentially expressed genes, recent publications have addressed

the problem of the efficiency of sample pooling, and some approximate

formulaswere provided for the power and sample size calculations. It is

desirable to have exact formulas for these calculations and have the

approximate results checked against the exact ones. We show that the

difference between the approximate and the exact results can be large.

Results: In this study, wehave characterized quantitatively the effect of

pooling samples on the efficiency of microarray experiments for the

detection of differential gene expression between two classes.We pre-

sent exact formulas for calculating the power of microarray experi-

mental designs involving sample pooling and technical replications.

The formulas can be used to determine the total number of arrays

and biological subjects required in an experiment to achieve thedesired

power at a given significance level. The conditions under which pooled

design becomes preferable to non-pooled design can then be derived

given theunit costassociatedwithamicroarrayand thatwithabiological

subject. This paper thus serves to provide guidance on sample pooling

and cost-effectiveness. The formulation in this paper is outlined in the

context of performingmicroarray comparative studies, but its applicab-

ility isnot limited tomicroarrayexperiments. It is alsoapplicable toawide

range of biomedical comparative studieswhere sample poolingmay be

involved.

Availability: A Java Webstart application can be accessed at http://

wads.le.ac.uk/htox/WadsSoftware/MrcStats/SCal4Poolings.jnlp

Contact: sdz1@le.ac.uk; twg1@le.ac.uk

1 INTRODUCTION

Pooling samples in biomedical studies has now become a frequent

practice among many researchers. For example, >15% of the data-

sets deposited in the Gene Expression Omnibus Database involve

pooled RNA samples (Kendziorski et al., 2005). The practice of

pooling biological samples though is not a new phenomenon, as it

can be traced back at least to 1940s (Dorfman, 1943) and has been

used in different application areas (Gastwirth, 2000), e.g. for the

detection of certain medical conditions and estimation of prevalence

in a population. In the context of detecting differential gene expres-

sions using microarrays, divergent views on the wisdom of pooling

samples can be found in the literature (Agrawal et al., 2002;

Affymetrix, 2004; Shih et al., 2004; Churchill and Oliver, 2001;

Peng et al., 2003; Jolly et al., 2005). One of the arguments sup-

porting the practice of pooling biological samples is that biological

variation can be reduced by pooling RNA samples in microarray

experiments(Churchill and Oliver, 2001). As more carefully

described by Kendziorski et al. (2005), pooling can reduce the

effects of biological variation, but not the biological variation itself.

Another argument in support of pooling samples in microarray

experiments is that it reduces financial cost. However, cost reduc-

tion is meaningful only if statistical equivalence between the

pooled and the non-pooled experimental setups is maintained.

Here we address this issue and present formulas to determine

the conditions under which pooled and non-pooled designs are

statistically equivalent.

To compare experimental designs with and without sample pool-

ing the two designs must have something in common that can be

measured, e.g. using the same or equivalent amount of resources or

yielding the same level of detection power. Kendziorski et al.
(2003) used the width of the 95% confidence interval for gene

expression to compare different experimental designs with and

without sample pooling. The criterion was that the narrower the

confidence interval, the more accurate the results from the experi-

mental design. In a comparative study where two groups of biolo-

gical subjects are compared the common goal of the different

experimental designs is to detect a change between the two groups

with a given power at a given false positive rate, as adopted in Shih

et al. (2004). We shall use the latter method to compare different

designs. So in this work statistical equivalence means that the

designs have the same statistical power at the same level of signi-

ficance. Therefore the more appropriate experimental design will

be the one which uses less resources to achieve this statistical

equivalence.

The basic assumption underlying sample pooling is biological

averaging; that the measure of interest taken on the pool of samples

is equal to the average of the same measure taken on each of the

individual samples which contributed to the pool. For example in

the situation of a microarray experiment, if r individual samples

contribute equally to a pool, and the concentrations of a gene’s

mRNA transcripts for the r samples are denoted by Ti with i ¼
1,2, . . . , r indexing the individual samples, the assumption of bio-

logical averaging says that the concentration of this gene’s mRNA

transcripts in the pool is T ¼ 1=rð Þ
Pr

i¼1 Ti. However, for micro-

array experiment there is some debate on whether the basic

assumption of pooling holds. Kendziorski et al. (2003, 2005)�To whom correspondence should be addressed.
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argue that there is limited support for this assumption. Here we do

not seek to enter into this debate but rather take the assumption of

biological averaging as valid, or at least approximately so, so that

we are in a position to determine whether pooling samples is fin-

ancially beneficial or not. The validity of biological averaging

makes it possible (or easier) to derive a neat theoretical formulation.

On a practical level though, the requirement for the validity of this

assumption may not be as stringent as a theoretical formulation

does. For instance, Kendziorski et al. (2005) show that even

when biological averaging does not hold, pooling can be useful

and inferences regarding differential gene expression are not

adversely affected by pooling.

One situation where there is little alternative but to pool biolo-

gical samples is where there is insufficient amount of RNA from

each individual biological subject to perform single microarray

hybridization. RNA amplification may be a possible way of obtain-

ing more RNA, but may not be practically feasible when many

individual biological subjects are involved as in the case of Jin

et al. (2001). In such a circumstance, pooling samples is justified

by the lack of alternative and will not be considered further here.

Similarly we will not consider here the case where all the biological

samples of the same group were pooled together, and multiple

technical replicate measurements were carried out on the sample

pool. This is sometimes seen in the literature (Muckenthaler et al.,
2003), but such an experimental design leaves no degree of freedom

to estimate the biological variance. Thus valid inferences about the

differences between the two populations of biological subjects

under study cannot be made. Here we only consider situations

other than the above two and where pooling may reduce the overall

costs of the experiments.

2 A GENERAL FORMALISM

For every comparative study, there is at least one measurable quant-

ity which is the quantity of interest. The goal of the study is to

deduce from the data collected whether there is any difference

between the means of the two populations. As measuring all the

biological subjects in two populations is rarely possible in most

situations representatives from a population are randomly selected

and measurements are made on these. These are then taken to infer

the properties of the population.

Let X be the measurable quantity that is being determined in the

experiment, e.g. the expression level of a gene. In the case of one-

channel microarray, X could denote the logarithm (most commonly

base 2 is used) of fluorescence intensity or the logarithm of the

fluorescence ratio in the case of two-channel microarray. Let

xci denote the value of X for an individual subject i in the control

population (c), and xtj that of the individual subject j in the treatment

population (t). We assume that xci s for all individuals in the control

population are independent normally distributed with a mean mc and

a variance s2
c , denoted by xci � N mc,s

2
c

� �
for all i. Similarly, xtj �

N mt‚s
2
t

� �
for all j.

2.1 A general experimental setup

For a general experimental setup individual subjects from both

populations are randomly selected and tissue samples collected

from each. Tissue sample pools are made by pooling a given number

r of randomly selected tissue samples (of the same population)

together. Note that to make n pools we need to have selected nr

individual subjects from the population. m measurements are then

made on each pool of tissue samples. So m is the number of tech-

nical replications of measurement on each pool. Notice that by

introducing two parameters r and m a general and flexible experi-

mental setup has been created. For instance, if we set r ¼ 1, the

experiment would be equivalent to no pooling of tissue samples.

And if we setm¼ 1 there is no technical replication. Under the basic

assumption of biological averaging, the result of pooling r tissue

samples in equal proportions together is that the value of X for the

pool is the average of those subjects which formed this pool,

~xx ¼ 1

r

Xr
i¼1

xi: ð1Þ

It follows that �xx � N mc‚s
2
c=r

� �
for a pool from the control popu-

lation, or �xx � N mt‚s
2
t =r

� �
for a pool from the treated population.

Note that in this paper we shall only discuss pooling samples with

equal individual contributions. While pools formed by unequal

contributions from individual samples are possible, such pooled

experimental design is generally less effective than the equal pool-

ing, as already shown by Peng et al. (2003) with their simulated

results.

When we take a measurement on a pool p, the measured value is

yp‚ k ¼ ~xxp þ ek‚ ð2Þ

where p indexes pools, k indexes measurements and ek is a random

error term assumed to be independently and normally distributed as

ek � N 0‚s2
e

� �
. Hereafter s2

e will be referred to as the technical

variance, s2
c the biological variance for the control population

and s2
t the biological variance for the treatment population.

The output of the experiment are the measurements on the two

sets of pools. For the control group, we have ycp‚ k for p ¼ 1, . . . , nc
and k¼ 1, . . . , m. And for the treatment group, we have ytp‚ k for p¼
1, . . . , nt and k ¼ 1, . . . , m. Here nc and nt are the numbers of pools

prepared for the control and treatment populations, respectively.

Our task is to infer population properties from these measured

data. In particular, we want to know whether there is any difference

between the two population means mc and mt. It can be shown that

�YY c ¼ 1

mnc

Xnc
p¼1

Xm
k¼1

ycp‚ k ð3Þ

is an unbiased estimator of mc, with a variance

1

nc

s2
c

r
þ s2

e

m

� �
‚ ð4Þ

and similarly,

�YY t ¼ 1

mnt

Xnt
p¼1

Xm
k¼1

ytp‚ k ð5Þ

is an unbiased estimator of mt, with a variance

1

nt

s2
t

r
þ s2

e

m

� �
: ð6Þ

If we make an additional assumption that the variances for the two

populations of biological subjects are the same, i.e. s2
c ¼ s2

t ¼ s2,

then the difference between Equation (5) and (3),D ¼ �YY t � �YY c, is an

Effect of pooling samples
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unbiased estimator of m ¼ mt � mc with a variance

s2
D ¼ 1

nc
þ 1

nt

� �
s2

r
þ s2

e

m

� �
: ð7Þ

The factor s2=r þ s2
e=m

� �
in Equation (7) can be estimated without

bias by

s2p ¼
1

nc þ nt � 2

Xnc
p¼1

1

m

Xm
k¼1

ycp‚ k � �YY c

 !2

þ 1

nc þ nt � 2

Xnt
p¼1

1

m

Xm
k¼1

ytp‚ k � �YY t

 !2

:

ð8Þ

It is then clear that

t ¼
�YY t � �YY cð Þ � mt � mcð Þ
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nc þ 1=nt

p ð9Þ

follows the Student’s t-distribution with nc + nt � 2 degrees of

freedom. In detecting a differential gene expression, we want to

test the null hypothesis mc ¼ mt against an alternative hypothesis

mc 6¼ mt. So our test statistic is

t0 ¼
�YY t � �YY cð Þ

sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nc þ 1=nt

p ‚ ð10Þ

and there are no unknowns in Equation (10). Note that t0 can be seen
as a generalized two-sample t-test statistic, which reduces to the

statistic of the traditional two-sample t-test with equal variance

when we set the parameters r ¼ 1 (no pooling of tissue samples)

and m ¼ 1 (no technical replication of measurements). Shih et al.
(2004), arrived at two separate statistics, one for non-pooled design,

the other for pooled design. The t0 defined by Equation (10) is in

more general form, setting r ¼ 1 and m ¼ 1 in Equation (10)

recovers Shih et al.’s statistic for non-pooled design; while setting

r > 1 and m ¼ 1 recovers Shih et al.’s statistic for pooled design.

Note that m does not need to equal 1. Here by incorporating two

additional parameters r andm, the statistic t0 can deal with situations
where there are pooled tissue samples and multiple technical

replications.

2.2 Criteria of significance

As with any statistical test we need to specify a threshold P-value
Pth to claim significant results in the test. When all the other para-

meters are given, setting Pth is equivalent to setting a threshold, say

|j|, for the statistics t0 defined in Equation (10). With this threshold

t-value, our criteria for claiming a significant test is as follows:

If t0 > |j|, we declare that mt � mc > 0; if t0 < � |j|, it is claimed

as mt � mc < 0. So the rate at which false positive claims are made is

Pth ¼
Z �jjj

�1
rncþnt�2 t0ð Þ dt0 þ

Z 1

jjj
rncþnt�2 t0ð Þ dt0

¼ 2

Z �jjj

�1
rncþnt�2 t0ð Þ dt0 ¼ 2Tncþnt�2 �jjjð Þ‚

ð11Þ

where rncþnt�2 :ð Þ is the probability density function (PDF) of the

Student’s t-distribution with nc + nt � 2 degrees of freedom, and

Tncþnt�2 :ð Þ is the corresponding cumulative probability distribution

function (CDF). It is therefore apparent that the threshold t-value |j|

can be obtained by solving the equation 2Tncþnt�2 � jjjð Þ ¼ Pth

with a given false positive rate Pth.

3 POWER FUNCTION

In Zhang and Gant (2004) we presented a power function for a new

statistical t-test (hereafter referred to as ‘two-labelling t-test’) in the
context of using two-colour microarrays to detect differential gene

expression. Following similar steps we can derive the power func-

tion for the generalized two-sample t-test presented in this paper,

which reads

S ¼
Z 1

0

pncþnt�2 Yð ÞF � jjj
ffiffiffi
Y

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc þ nt � 2

p þ jmj
sD

� �
dY‚ ð12Þ

where pncþnt�2 Yð Þ is the PDF for the x2-distribution with nc + nt � 2

degrees of freedom and F(.) is the CDF for the standard normal

distribution. The rate S at which a true difference between mt and mc

can be successfully detected is a function of nc, nt, |m|/sD, and |j|.

With sD given by the square root of Equation (7), and |j| determined

by solving Equation (11) at a given false positive rate Pth, S is,

eventually, a function of Pth, nc, nt and |m|/sD.

A few points are worth noting here.

(1) The two-labelling t-test presented in Zhang and Gant (2004)

was designed to deal with systematic labelling biases gener-

ated during microarray experimentation. The t-test presented
in this paper, however, assumes no systematic data biases. In

the case of two-colour microarrays this requires a common

reference design. In such an experimental design the labelling

biases cancel themselves out in the calculation of the test

statistic.

(2) In Zhang and Gant (2004), the biological variances of the

two populations under comparison do not have to be the

same, i.e. we did not assume s2
c ¼ s2

t . For the t-test in this

paper, we have made an additional assumption that s2
c ¼ s2

t .

Relaxing this requirement was possible, as in the case of the

traditional two-sample t-testwithunequal variance (Brownlee,
1965), but an exact power function could not be readily

obtained.

(3) The exact power function obtained in this paper allows evalua-

tion of the effects of pooling biological samples and the effects

of taking multiple technical measurements, thus giving

researchers quantitative guidance on the practice of pooling

samples.

(4) By setting the parameters r ¼ 1 and m ¼ 1, an exact power

function is provided for the traditional two-sample t-test with
equal variance.

4 RESULTS

We have implemented the computation of the power function S
of Equation (12) as a Java application, which can be accessed at

the URL given in the abstract. Here we apply this to microarray

comparative studies for finding differentially expressed genes and

investigate the effect of pooling RNA samples in the experiments.

We also compare our exact results with some approximate results

presented by other authors (Shih et al., 2004) to demonstrate why an

exact formula is desirable.

S.-D.Zhang and T.W.Gant
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4.1 Comparison with approximate results

Based on their approximate formulas, Shih et al. (2004) considered
two scenarios to compare the number of biological subjects and

number of microarrays in the non-pooled and pooled designs. Here

we give exact results for the two scenarios to show the difference to

the approximate results. In the first scenario, we consider that the

common biological variance of the two populations is s2 ¼ 0.05,

and the technical variance s2
e ¼ 0:0125, which gives the biological-

to-technical variance ratio l ¼ s2=s2
e ¼ 4. The preset target of the

experiment in this scenario is that the false positive rate being

controlled at Pth ¼ 0.001 and the power being no less than S ¼
0.95 to detect a 2-fold differential gene expression, which corres-

ponds to m¼ 1 with base 2 logarithm (Shih et al., 2004). In Table 1,
we present results for different pooling parameter r. It can be seen

from the first panel of this table that in order to hit the preset target,

the non-pooled design (r¼ 1) requires at least 12 biological subjects

divided evenly to the two populations, i.e. 6 from each of the two

populations. Having seven subjects from one population and five

subjects from the other is insufficient to achieve the target of 95%

detection power. The effects of other levels of pooling on the detec-

tion power are also shown in Table 1. The minimum number of

biological subjects (Ns) and microarrays (Nm) that meet the preset

targets is highlighted with bold fonts. It is clear that as the level of

pooling is increased (with increasing r), the number of microarrays

Nm can be reduced, but the number of biological subjects Ns has to

be increased. For example, in order to reduce the number of arrays

from 12 (Table 1, first panel) to 8 (Table 1, fourth panel), the

number of biological subjects to form the pools must be increased

from 12 to 40.

For the second scenario we consider the case s2¼ 0.2, s2
e ¼ 0:05,

which gives l ¼ s2=s2
e ¼ 4. Again the preset targets are to

detect a true differential expression m ¼ 1 with no less than

95% power while the false positive rate is set at Pth ¼ 0.001.

Using these parameters, the power S as a function of nc + nt is
plotted in Figure 1 for different levels of sample pooling. For the

Table 1. For the first scenario described in the text, the detection power of

designs with different levels of pooling

nc nt S r Ns Nm

5 5 0.8175 1 10 10

5 6 0.9026 1 11 11

6 5 0.9026 1 11 11

5 7 0.9488 1 12 12

7 5 0.9488 1 12 12

6 6 0.9553 1 12 12

6 7 0.9796 1 13 13

7 6 0.9796 1 13 13

3 3 0.3012 2 12 6

3 4 0.5555 2 14 7

4 3 0.5555 2 14 7

3 5 0.7602 2 16 8

5 3 0.7602 2 16 8

4 4 0.7937 2 16 8

4 5 0.9196 2 18 9

5 4 0.9196 2 18 9

5 5 0.9771 2 20 10

3 3 0.4060 3 18 6

3 4 0.6962 3 21 7

4 3 0.6962 3 21 7

3 5 0.8774 3 24 8

5 3 0.8774 3 24 8

4 4 0.9008 3 24 8

4 5 0.9745 3 27 9

5 4 0.9745 3 27 9

5 5 0.9957 3 30 10

2 2 0.0444 5 20 4

2 3 0.1930 5 25 5

3 2 0.1930 5 25 5

2 4 0.4732 5 30 6

4 2 0.4732 5 30 6

3 3 0.5324 5 30 6

3 4 0.8262 5 35 7

4 3 0.8262 5 35 7

4 4 0.9657 5 40 8

2 2 0.0643 18 72 4

2 3 0.2994 18 90 5

3 2 0.2994 18 90 5

2 4 0.6718 18 108 6

4 2 0.6718 18 108 6

3 3 0.7309 18 108 6

3 4 0.9515 18 126 7

4 3 0.9515 18 126 7

4 4 0.9969 18 144 8

with bold fonts.

The r ¼ 1 panel represents that of non-pooled design. Other parameter values are s2 ¼
0.05, s2

e ¼ 0:0125, l ¼ s2=s2
e ¼ 4 and m ¼ 1. Ns ¼ r(nc + nt) is the total number of

biological subjects required, and Nm ¼ m(nc + nt) is the total number of measurements

(microarrays) needed, counting both the control and the treatment populations. The

preset targets are false positive rate being controlled at Pth ¼ 0.001, to detect 2-fold

differential expression (m ¼ 1) with power no less than 0.95. The minimum number of

biological subjects (Ns) andmicroarrays (Nm) that meet the preset targets are highlighted

0 5 10 15 20 25 30 35 40 45 50
0.0
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Fig. 1. The power S as a function of the total number of pools nc + nt.
The parameters used are for the second scenario s2 ¼ 0.2, s2

e ¼ 0:05,

l ¼ s2=s2
e ¼ 4, Pth ¼ 0.001, m ¼ 1 and m ¼ 1. The five solid curves

correspond to different levels of pooling, from right to left, r ¼ 1, r ¼ 2,

r ¼ 4, r ¼ 6 and r ¼ 15, respectively. The dashed line indicates the 95%

power, the intersections of which with the power curves specify the total

numbers of pools (assuming nc¼ nt) needed to achieve the target power. The

total number of biological subjects and the total number of arrays can then

be calculated simply by Ns ¼ r(nc + nt), and Nm ¼ m(nc + nt), respectively.
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non-pooled design (r ¼ 1), Ns ¼ 30 total biological subjects and

Nm ¼ 30 arrays are required to hit the preset targets. Similar to the

first scenario, as the level of pooling is increased, the number

of arrays Nm is reduced while the number of subjects increased

to meet the preset targets.

In Table 2, we summarize our exact results and the approximate

results of Shih et al. (2004). It can be seen that the difference

between the two can be very large, indicating the need for exact

results. For example, in the first scenario when Nm ¼ 8 the approx-

imate result of Shih et al. (2004) predicts that a minimum of 21

biological subjects are required. In practice 24 subjects are required

as 24 is the minimum number >21 and divisible by 8. However this

experiment setup (24 subjects forming 8 pools, 8 microarrays) will

only give a detection power of 90%. To meet the target power of

95%, 40 biological subjects are actually required by our exact result.

If an experiment with Nm ¼ 7 microarrays is planned, Shih et al.
predicts that 37 subjects are required, but in fact 126 subjects must

be used to achieve the target. Generally, the approximate formulas

of Shih et al. (2004) are too optimistic in assessing the benefits of

pooling samples and reducing the number of microarrays, because

they underestimate the number of biological subjects required.

4.2 Cost analysis

Depending on the material costs involved in the biological subjects

and microarrays, the conditions where pooling samples becomes

beneficial may be different from laboratory to laboratory. Here we

show examples to determine these conditions. Denoting the cost

associated with each biological subject as Cs (including materials

and labour, etc.) and the cost associated with a microarray as Cm,

the total costs for an experiment in microarray comparative study is

CT ¼ NsCs + NmCm. Taking the first scenario as an example, the

total cost of a non-pooled design to achieve our preset targets is

CT r ¼ 1ð Þ ¼ 12Cs þ 12Cm‚

and the total cost for pooled design with r ¼ 2 is

CT r ¼ 2ð Þ ¼ 20Cs þ 10Cm:

Therefore in order that the pooled design with r¼ 2 is beneficial we

must have

CT r ¼ 2ð Þ � CT r ¼ 1ð Þ‚ ð13Þ

which requires that Cm � 4Cs. Put another way, only when the cost

associated with one microarray Cm is more than four times the cost

of a subject Cs, does the pooling design with r ¼ 2 become pre-

ferable to the non-pooled design. Similarly a higher level of pooling

with r ¼ 3 becomes preferable to r ¼ 2 only when Cm � 7Cs.

Furthermore the conditions for increasing the level of pooling from

r ¼ 3 to r ¼ 5 are Cm � 13Cs, and so on. Table 2 gives these

conditions for further levels of pooling.

For the first scenario using the actual cost figures given in Shih

et al. (2004) where Cs ¼ $230 and Cm ¼ $300, it can be seen that

none of the pooling conditions is met. Therefore for this laboratory

pooling samples is not recommended. However, if we use the cost

figures of Kendziorski et al. (2003) where Cs¼ $50 and Cm¼ $700,

an optimal design is a pooled design with r ¼ 5.

For the second scenario, it is a similar story. The cost figures

of Shih et al. (2004) (Cs ¼ $230 and Cm ¼ $300) give Cm ¼ 1.30Cs,

which does not satisfy any of the pooling conditions. So again

the non-pooled design with Nm ¼ 30 and Ns ¼ 30 is recommended.

On the other hand, the cost figures of Kendziorski et al. (2003)
(Cs ¼ $50 and Cm ¼ $700) give Cm ¼ 14Cs which satisfies all the

pooling conditions in the lower panel of Table 2 except the last

row. So in Kendziorski et al.’s laboratory the pooled design with

Nm ¼ 14 and Ns ¼ 84 would be recommended.

5 DISCUSSION

We have in this paper presented exact formulas for calculating the

power of microarray experimental design with different levels of

pooling. These formulas can be used to determine the conditions

of statistical equivalence between different pooling setups. As in

Kendziorski et al. (2003) and Shih et al. (2004), the calculations

presented in this paper are for an individual gene, so the statistical

equivalence for different designs of pooling can be determined with

regard to one particular gene. However, microarray monitors thou-

sands of genes simultaneously, and the biological and technical

variances vary from gene to gene, therefore no single result of

statistical equivalence between pooled and non-pooled designs

applies equally to all genes on the array. So in practice how

would the formulations in this work be used? One possible way,

as suggested by Kendziorski et al. (2003), is to specify the distri-

butions of s2 and se and calculate the total number of subjects and

arrays that maximize the average power across the array. In theory,

if the biological variances and technical variances were known for

all genes on the array, an equivalence condition between pooled and

non-pooled designs could be determined for each gene individually.

The overall (or say, average) equivalence condition between pooled

and non-pooled designs could be obtained, e.g., by some form of

averaging operation over all genes. An alternative and probably a

more practical way is to use representative values of s2 and se. We

therefore propose that parameters for ‘typical gene’ be used as

inputs for the power and sample size calculations. A typical gene

is a gene whose biological and technical variances have the most

Table 2. Comparison of our exact results and the approximate results of Shih

et al. (2004)

Nm Ns (Exact) Ns (Approx) Conditions

11 11

12 12

10 20 13 Cm � 4Cs

9 27 16 Cm � 7Cs

8 40 21 Cm � 13Cs

7 126 37 Cm � 86Cs

30 30

21 42 Cm � 1.33Cs

22 35

16 64 50 Cm � 4.4Cs

14 84 64 Cm � 10Cs

12 180 104 Cm � 48Cs

The upper panel of the table is for the first scenario, where s2 ¼ 0.05, s2
e ¼ 0:0125,

l ¼ s2=s2
e ¼ 4. The lower panel is for the second scenario, where s2¼ 0.2, s2

e ¼ 0:05,

and l ¼ s2=s2
e ¼ 4. The targets of both scenarios are that the false positive rate

Pth ¼ 0.001 and the power no less than S ¼ 0.95. The last column in each panel

gives the cost conditions when pooling samples become beneficial relative to a lower

level of pooling shown in this table.
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probable values among the genes, i.e. the mode of the distribution

for biological and technical variances of genes. Alternatively,

the median or mean variances across genes could be used as

representative values Shih et al. (2004).
An issue associated with microarray experiments is the problem

of multiple inferences, where a separate null hypothesis is being

tested for each gene. Given thousands of null hypotheses being

tested simultaneously, the customary significance level a ¼ 0.05

for declaring positive tests will surely give too many false positives.

For example, if among a total number N ¼ 10 000 of genes being

tested, N0 ¼ 4000 are truly null genes (genes that are non-

differentially expressed between the two classes), the expected

number of false positive results would be 4000 · 0.05 ¼ 200,

which may be too many to be acceptable. Thus a smaller threshold

P-value for declaring differentially expressed genes should be used.
Effectively controlling false positives in a multiple-testing situation

such as microarray experiments is an area which has drawn much

attention in recent years due to the wider application of microarray

technology. As discussed in our previous work in Zhang and Gant

(2004), generally speaking, all different multiple-testing adjustment

methods eventually amount to effectively setting a threshold

P-value and then rejecting all the null hypotheses with P-value
below this threshold. The classical Bonferroni multiple-testing pro-

cedure, which controls family-wise error rate at a by setting the

threshold Pth¼ a/N, is generally regarded as being too conservative
in the microarray context. The FDR (false discovery rate) idea,

initially due to Benjamini and Hochberg (1995) in dealing with

the multiple-testing problem, has now been widely accepted as

appropriate to the microarray situation. Recently, Efron (2004)

extended the FDR idea by defining FDR, a local version FDR.

When planning microarray experiments in terms of power and

sample size calculation, the FDR of Benjamini and Hochberg

(1995) is more appropriate and convenient to use. There are now

in literature a few slightly different variants of the definition of

FDR (Benjamini and Hochberg, 1995; Storey and Tibshirani,

2003; Grant et al., 2005), but in essence it is defined as the pro-

portion of false positives among all positive tests declared. To

provide an interface between FDR and the formulation in the pre-

vious sections, here we show that there is a simple correspondence

between controlling FDR and specifying the traditional type I error

rate and power. Suppose that there are a total number N of genes

being monitored by microarray, so there will be N hypotheses being

tested, one for each gene. Suppose that a fraction p0 of the N genes

are true null genes, i.e. genes that are non-differentially expressed

between the two classes. Given the type I error rate Pth, the expected

number of false positive tests is PthNp0; Given the power S, the
expected number of non-null genes (truly differentially expressed

genes) that are declared positive is SN(1 � p0). So the FDR

achieved by this setting is

FDR ¼ PthNp0

PthNp0 þ SN 1� p0ð Þ ¼ Pthp0

Pthp0 þ S 1� p0ð Þ : ð14Þ

Here p0 is an important parameter in controlling FDR, for which

several different methods of estimating this parameter have been

proposed (Pounds and Morris, 2003; Storey and Tibshirani, 2003;

Zhang and Gant, 2004). Especially the method we presented in

Zhang and Gant (2004) is an accurate yet computationally much

simpler algorithm than the one proposed by Storey and Tibshirani

(2003). With the interface Equation (14), FDR can be readily

presented and incorporated into the calculations.
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